
Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

The design and the implementation of MUML

Hazim RAWASHDEH
Tafila Technical University

Tafila, Jordan
 hazim@t u.edu.jot

Abdullah Moh ZIN

Universiti Kebangsaan Malaysia
Bangi, Malaysia
amz@ftsm.ukm.my

Sufian IDRISS

Universiti Kebangsaan Malaysia
Bangi, Malaysia

sufian@ftsm.ukm.my

ABSTRACT
This study describes the design of an automatic grading system for assessing graph-based
assignments. Graph-based concept is taught in several computing courses such as
Database, System Analysis and Software Engineering. In this study we take two necessary
concepts into concern when assessing the answers; the model syntax and the model
semantics. The syntax of the answers model or design can be achieved by using a free-
syntax error modeling CASE tool such as Rational Rose or MagicDraw. On the other
hand, the semantic of the model can be checked by mapping the model into a formal
language like SMV. Therefore, the model properties can be checked against the
requirements. In this study, the MagicDraw extremely is used for drawing the model and at
the same time SMV is used for checking the model.

Keyword--: UML, SMV model checker, Automatic evaluation, diagram-based evaluation.

I

NTRODUCTION

There is a great deal of literature on how to represent and recognize diagrams and a well
developed theory of visual languages[1]. In spite of that most of automated examination
evaluations systems are text-based tools where the questions are in a multiple choice
format. Many of diagram-based evaluations tools were produced with various techniques
and methods. For UML models so many of researchers are interesting and welling to have
their grading tools in this language, but the work that has been done focus only on the

mailto:hazim@ttu.edu.jo
mailto:amz@ftsm.ukm.my

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

syntax check of the model that might be done by choosing the right modeling tool such as
MagicDraw.

The common marking tools used to grade answers, are mostly a multiple choice based
systems. The developers of these tools use several programming language to design the
exam, but as most of them are web based exams, they use in that web pages design the
scripting languages such as java script or VB script to enrich these tools. Instantly Ng[2]
has showed up a Javascript approach to create a multiple self-marking engine. This engine
was developed with the following features:

The questions are to be randomly selected from a pool of questions prepared. If the student
is presented with a question that he/she does not wish to attempt, it should be possible to
skip that particular question
The prepared questions are contained within a selection of HTML web pages
A student responds to the question by a simple selection of choices, from A to D, using the
computer's mouse
The program compares the student's response with an attempted answer to the question and
indicates whether it is right or wrong
If the response given is wrong, the student should be able to reselect until he finally gets it
right
The engine does not grade the student's attempts as it is meant to be used as a tool by the
student to gauge his/her understanding of the topics taught

 The automatic grading of answers presented in a textual form has gained much
attention over the years, as there are several systems being developed for marking textual
material automatically as investigated in Burnstein et al.[3] and Haley et al.[4]. Most of
these systems need students to type their answers into a web form using their computers at
home to submit the answers passing through the Internet into a server for grading. This
type of electronic examination system can give an instant feedback of the grade and can
provide a textual feedback for the answers, so the results can be well accepted[5].
Constantinos Nikolou [7] has reviewed the state of the art in Automated Essay Scoring
AES that evaluate written essays. Thomas [5] described the development of a marking tool
that can help the marker with the marking of free-text response questions. His approach is
to build certain tools to aid the instructor (marker) in the process of marking and not to
automatically mark the free-text responses. Thomas [5] approach concludes with a
discussion of suggested tools and features for inclusion in future development. In contrast
to multiple choice and textual marking tools, there has been a little work on the creation or
marking of diagrams marking of diagrammatic answers. Tsintsfas [7] has produced a
framework for diagram-based evaluation of coursework which has fed into an ERD tool
within the Course Marker Computer Based Evaluation (CBA) system. On the other hand
Higgins and Bligh [8] as well as Batmaz and Hinde [9] have proposed a semi-automatic
grading system.

A tool for Learning and automatically assessing graph-based diagrams for Entity Relation
Diagrams (ERD) is produced by Pete Thomas e al. [6].

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

In the following sections we discuss the problem of diagram mapping and formal
presentation, the approach to automatically marking diagrams and the built tools to make

se of this technology for learning and evaluation. The last section discusses how we
ntend to take this research forward.

u
i

U

ML FORMAL PRESENTATION

We consider that the behavior of systems can be specified within a single statechart
diagram. A requirement to formally verify behavioral properties is to map the statechart
diagram into a formal semantic model. Definitely, the semantic model should satisfy the
UML semantics of statecharts. A behavior of a single object or state a single statechart to
be model checked needs indeed an interpretation of the statecharts model as a Kripke
model. It is the responsibility of this research methodology to build a semantic model,
required by the model checker CaSMV, for the system to be used later as an infrastructure
for the proposed marking tool. It is the starting point to build the architecture of easy-to-
use verification tool (Fig. 1) and the improved marking tool that assists in the process of
formal verification and on the other hand to assess the student model in order to grade
his/her level (Fig. 2).

The main objective of this research is to develop a method and criteria for grading the
semantic of UML models. To achieve this objective a suitable platform should be used by
the students to model the desired systems. MagicDraw case tool can be used or any other
tool that support syntax check of UML models.

In this research, we attempt to model check the statecharts of UML using SMV model
checker. For this purpose, we need a suitable algorithm to transfer UML statecharts into
SMV codes. Figure 1 states the architecture of model checking UML statechart diagrams
for this research. Not only class diagram, statechart and collaboration diagrams in a UML
model are included, as we need only these diagrams for the model checking purpose.

Further more, the transformation algorithm process is applied to the said diagrams and we
get SMV modules for each class in the UML model. Class diagrams confirm associations
between classes and make the connection of all relative SMV modules connected.
Collaboration diagrams are responsible of the information of message sequences to figure
the specification of the model to be checked and to determine how the main SMV module
would looks like. Once translation process is completed, the SMV model checker is
applied to check the specifications in this formal language with a concrete mathematical
basis which means that it is possible to check whether the system complies with definite
desirable properties. As the more increasing complexity of today's software systems that
perhaps requires to develop a new verification methods and tools, to carry the verification
process either in an automatic or semi automatic manner. Note that the model checker will
be run not only on the message sequences specifications but also on requirements
specification given by the student or the teacher who design the model for desired
properties. Later on when SMV generates a negative counter example the process might be
applied to UML model or to a given specifications.

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

Student

UML
model

Class
diagram

Statechart
diagram

Collaboration
diagram

SMV modules

SMV main
modules

CTL specification

Counterexamp

Teacher

Other
diagrams

Transformation
Algorithm

Figure 1: architecture of model checking UML statechart diagrams.

Student’s UML model

Problem statement

Properties identified
by teacher

SM V input SM V input

SM V model checking

Output

Figure 2: graphical representation of the verification tool

To construct the transformation algorithm, we adopt the STP-approach because it quite
translates STATEMATE statecharts into SMV successfully. Furthermore STP approach is
suitable for translating UML statecharts as the structures of UML and STATEMATE
statecharts are very similar. In our study we are going to adopt a specific parts of STP
algorithm that suits the transformation rules of our tool.

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

As shown in Fig. 2 the tool is performing, without interference on the user's part, a
complete, automatic mapping of the behavior specified in UML into an SMV specification,
focusing on reactive systems in which the active behavior of the classes is represented
through state diagrams and activity diagrams to be used to reflect the behavior of class
operations. XMI (OMG[10]) (XML Metadata Interchange) is used as the input format, so
making it independent of the tool used for the system specification. Therefore the input
format to our tool is an XML representation of the student model and for the proprieties we
created XML format to support interoperability amongst front-end tools. To achieve this
we create these models using a UML editor called MagicDraw with a plug-in that outputs
the model in the XML format.

In contrast, the tool has a versatile patterns assistant that guides the teacher in how to insert
properties so they will be verified later using temporal logic. The verification process is
carried out as said in the previous section in such a way that the teacher needs no
knowledge of either formal languages or temporal logic to be able to take advantage of its
potential. Additionally, there is no need to know about the internal composition of
variables and modules for verification process.

In parallel, a wizard of TUSAG helps the teacher to write properties to be verified using
LTL (Linear Temporal Logic), in addition if the property is not satisfied, the tool illustrates
a counterexample trace. In our tool, verification process is carried out using the SMV as
discussed. With this tool, it is possible to make a complete automatic verification. i.e.,
given a property, a positive or negative respond is always obtained by the combined SMV
and then the property should be expressed in a temporal logic presentation, with
Computation Tree Logic (CTL) or Linear Temporal Logic (LTL). Writing a property is not
as easy as wish for since the teacher should be expert in CTL or LTL and should be having
an advanced knowledge in formal methods, logics and the type of specification acquired
from the system. In fact our tool overcomes this problem as it has an assistant that direct
the teacher through out writing the properties until the property to be verified is obtained
following the suitable syntax.

 PATTERN CLASSIFICATION

 The starting point of this study was the pattern classification proposed by Dwyer et al
where each property has been specified in LTL and it is established a first classification
between occurrence and order patterns since most of the properties to be verified, fit in
with one of these two categories[11]. In fact occurrence patterns describe the occurrence or
absence of an event (state)/sequence of events or signal during the system computation.
These patterns include absence (never) which expresses the ability of a piece of a system’s
execution from certain events or states. Universality (always) describes a piece of a
system’s execution that only contains events (states) where a desired property is achieved.
Existence (sometimes) expresses the occurrence of a certain event (state) in a system’s
execution and the last type of occurrence patterns is bounded existence which describes the
appearing of a specified number of events or states in a system’s execution.

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

Order patterns express the ordering of several events (states). They include precedence as
(s precedes p) that expresses the relationship between a pair of events (states) where the
occurrence of the second event depends mainly on the occurrence of the first one. The
second type of order patterns is response (s responds to p) that describes a cause-effect
relationship between a pair of events. The third type is the combinations of both chain
precedence and chain response, where chain precedence (s and t precede p or p precedes s
and t) describes the precedence relation between two sequences of events and chain
response (s and t respond to p or p responds to s and t) that expresses the response relation
between two sequences of events, where the first sequence is considered as the chain
stimulus and the second is considered as the chain response. And finally the constrain
chain (s and t without z respond to p).

P ro p erty

O c cu rre n c e

A b se n c e

U n iv e r sa lity

B o u n d ed

E x is te n c e

O rd er

P re ce d en c e

R e sp o n s e

C h a in

C h a in r e sp o n se

Figure 3: the pattern classification

 The classification of the above patterns can be shown in Fig. 3.

In general, our aim is to fulfill properties that can be considered as requirements. The result
of this process is that teachers can speed up the initial development of requirements models
by the use of the properties patterns. The inserted properties for verification purpose have
been arranged to create limits for the scopes (Q and R) and to state properties order when
there is more than one property (s, t o z), that is why there is no need for the teacher to
know or realize the specification structure obtained in SMV. In this study the type of
established properties are a particular state of a state machine, a particular state of an object
activity, a generated event and an attribute value comparison.

The marking tool will generate the property in the required format automatically, that’s of
course regarding to the option selected by the user and the chosen pattern. Therefore the
tool can start and execute SMV using the plug-in to carry out the verification process. The
tool then depends on the generated counter-example when the property is not satisfied.

As shown in Fig. 2, the student needs only a knowledge of the system studied and UML
language as well and the rest procedures are to be obtained automatically by the tool it self

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

as it will represent the model formally in SMV from XMI textual representation. In
parallel, the teacher is writing the properties with the help of tool wizard that use LTL
(Linear Temporal Logic). Furthermore if the given property is not satisfied, the tool can
show a counterexample trace. In our study we are not going to stop on the
counterexample, since we plan to analyze the result (trace) to determine how many
properties are not satisfied, so based on that the tool will decide the student's mark as we
depend on the number of negative traces in the SMV output file. MUML is a formative
grading tool as evaluation is performed throughout a course and not at the end of it.

Figure 4: MUML students screen.

MUML ARCHITECTURE

This section presents the architecture of the development proposed automatic marking
(grading) tool of student submitted course work. We consider the case where the exam
submission consists of two parts: A design (using UML methodology) which is certainly
prepared by the students. The student can read the title of the assignment displayed on
MUML main screen, where this screen as shown in Fig. 4 consists of three steps explained
subsequently.

The first step allows the student either to read the assignment or to print it, so in this case
the student can perceive all the model specifications and constrains. If the student click the
READ command then a Notepad file contains the whole system specifications is opened
for him. The second step allows the student to open the MagicDraw CASE tool directly
from this screen so he can draw the desired model in an independent screen. When the
student finished the design he needs just to save the file as xmi (XML Metadata
Interchange) and save it in the MUML folder, so MUML will export this file in order to

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

insert it into the integrated SMV model checker. On the other hand he or she can use the
EDIT button to make any adjustment to the model (using MagicDraw) before submitting
the assignment.

The third step is to choose the SUBMIT command and at this pint he the student has no
control on the work as MUML imports the xmi file as an input file for the model checker.
SMV will check the state space of the model and wait for the formal TLT properties of the
model to be entered by the teacher. Figure 6 shows the MUML screen specified to the
teacher. The teacher has many choices to do with the stored assignments. First of all he can
browse the answer files of his students, whenever he chooses one, then it is the time to
insert the system properties that he wants to check with the help of the plug-in patterns.
These patterns appear on the right side of his screen.

The tool will accept the TLT (Linear Temporal Logic) with an assistant that leads the user
through the properties writing until all of them are inserted with the appropriate syntax. So
both the xmi of the student design and the xmi of the system properties are automatically
mapped from the textual presentation into will start SMV formal presentation.

Figure 5: SMV true property verified example

Figure 6: SMV true property verified example
After that MUML will start SMV model checker in separate window to check the
properties, as if the property is not satisfied, the tool shows a counterexample trace (Fig. 5)

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

otherwise it will show an empty trace for the correct proprieties. In all cases MUML will
deal with output file of SMV that contains the results, and has to determine the student
mark depending on the number of true and false results obtained from this file. As an
example Fig. 3 and 4 shows a screen shots of the verification result in SMV, while Fig. 3
shows a true result for the properties, Fig. 4 shows a false results for the given properties.
In many cases the result is a mixed up of true and false results which means the student
will get a mark that is between zero and ten as shown in the next example:

 MUML EVALUATION AND MODEL CHECKING RESULTS.

 The student’s mark is to be given according to the output file generated by SMV
model checker. The output file should be occurred as shown in the next example:

(EF((s0 = critical) and (s1 = critical))).....................false
(AG ((s0 = trying)->(AF (s0 = critical))))................false
(AG ((s1 = trying)->(AF(s1 = critical))))..................true

(AG ((s0 = critical)->(A ((s0 = critical) U
((~(s0 = critical)) and (A ((~(s0 = c….………...….false

(AG ((s1 = critical)->(A ((s1 = critical) U
((~(s1 = critical)) and (A ((~(s1 = c..………….......false

In this example and according to the shown MUML will give the student two marks out of
ten, hence we have four false results out of five. One more scenario of the output is to have
the property not verified, which means the result of that property (properties) verification is
false. In this case the student should get zero mark for the semantic part of the model (as
we consider that his model is free of syntax errors) if the result is false for all properties.
As discussed the tool depends on the ratio of true or false result to the total number of the
verified properties.

MUML therefore is an integration of the explained tools in the previous section. These
tools are the UML CASE tool whereas use MagicDraw for this purpose, TLT patterns
are used for the formal presentation of the model, the symbolic model checker SMV is
used to check the model semantics and finally MUML analyzer that analyze the model
checker result in order to determine the student mark.

One of the major objectives of this study is to evaluate the effectiveness of the proposed
method and tool MUML. This can be achieved by comparing the performance of the tool
against human graders i.e., instructors of software engineering course. This study set about
building a significant amount of student drawn UML diagrams. Almost 400 diagrams were
gathered that drawn by the students. Figure 1 is an example solution to the created
question).

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

Figure 7: teacher’s marking window

Table 1: the difference between the MUML and human markers.

Difference Diagrams Percentage Total (%)
0.00 203 68.80 68.8
0.50 66 22.30 91.1
1.00 24 8.10 99.2
1.50 1 0.33 99.6
2.00 0 0.00 99.6
2.50 1 0.33 100.0

These diagrams were actually graded by a group of human markers whose work was only
to check for consistency and accuracy to be sure that these diagrams reflect the accurate
diagram content. In this study a set of 100 was used in the marking algorithm development,
for detecting errors and bugs as this set can be used for training.. The rest of these diagrams
(295) were used to test the accuracy of the automatic marker when compared to the human
markers.

Table 1 shows the results of this experimentation. The diagrams were marked out of 7 and
rounded to the nearest half mark. It shows also that the results of MUML agree closely
with the human markers in approximately 68.8% of all cases. However we feel that over
90% reflect the accuracy of the used automatic marker.

We consider that MUML provides the student with two elements of feed back when he/she
submits any of the given diagrams for grading, first of all a grade that shows how the
student’s attempts matches the correct solution; second element is a copy of the student’s
answer, which covers the example solution showing the proprieties that either have a true
or false result for the verification process.

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

CONCLUSION

The performed experiments that we have performed on MUML automatic marking tool
have given very hopeful results. We have a method and framework for capturing,
processing and mapping graph-based diagrams formally i.e. they can work in a practical
learning environment. The mapping phase applied to UML diagrams' grading and
compared with human markers has shown the efficiency of the tool, on the other hand we
planned to enhance some aspects of its performance by letting the tool to provide a feed
back of the students design drawbacks therefore it can be used as a learning tool.

As future research, more UML diagrams, both versions can be used for the verification and
grading process since at the time been it is applied only on the most used diagrams such as
Class Use case and state and activity diagrams as stated in the survey done by Dobing and
Parsons[12].

REFERENCES

Thomas, P.G., K. Waugh and N. Smith, (2006). Using patterns in the automatic marking of
ER diagrams. Proceedings of the 11th Annual Conference on Innovation and Technology
in Computer Science Education, June 26-28, ITiCSE, Bologna, Italy, pp: 403-413.

ThesisAbstracts Retrieved from http://intranet.cs.man.ac.uk/Intranet_subweb/library/
ThesisAbstracts/MSc03/nikolou.pdf. last visited 1/2/2009.

Higgins, C.A. and B. Bligh,(2006). Formative computer based evaluation in diagram
based domains. Proceedings of the 11th Annual Conference on Innovation and Technology
in Computer Science Education, Jun. 26-28, ITiCSE, Bologna, Italy, pp: 98-102.

Batmaz, F. and C.J. Hinde,(2006). A diagram drawing tool for semi-automatic evaluation
of conceptual database diagrams. Proceedings of the 10th Annual International
Conference in Computer Assisted Evaluation, Loughborough University, Loughborough,
UK., pp: 68-81.

OMG.,(2003). XML Metadata Interchange (XMI) v 2.0. OMG Document 2003-05-02.

Beato, M., M.B. Solorzano and C. Cuesta, (2004). UML automatic verification tool
(TABU). Proceeding of the Specification and Verification of Component Based

Systems (SAVCBS), SIGSOFT 2004/FSE-12 12th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp: 106-109.

Dobing, B. and J. Parsons, (2008). Dimensions of UML use: A survey of practitioners. J.
Database Manage., 19: 1-18.

Jurafsky, D. and J.H. Martin., (2000). Speech and language processing. Proceedings of the
an Introduction to Natural Language Processing, Computational linguistics and Speech
Recognition, Upper Saddle River, Prentice Hall.

http://intranet.cs.man.ac.uk/Intranet_subweb/library/

Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia, Copyright © H. RAWASHDEH, et al, 2011

The design and the implementation of MUML. H. RAWSHDEH, et al

Ng, T.W. (2000). Creating a multiple-choice self-marking engine on the internet. Int. J.
Eng., 16: 50-55.

Burstein, J., M. Chodorow and C. Leacock, (2003). Criterion SM online essay evaluation:
An application for automated evaluation of student essays. Proceedings of the 15th Annual
Conference on Innovative Applications of Artificial Intelligence, Acapulco, Mexico.

Trusso, H.D., P. Thomas, A.D. Roeck and M. Petre, (2005). A research taxonomy for
latent semantic analysis-based educational applications. Proceedings of the International
Conference on Recent Advances in Natural Language, Borovets, Bulgaria, pp: 575-579.

Thomas, P.G., K. Waugh and N. Smith, (2005). Experiments in the automatic marking of
E-R diagrams. Proceedings of the 10th Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE, Monte de Caparica, Portugal, pp: 158-162.

	INTRODUCTION
	UML FORMAL PRESENTATION
	 PATTERN CLASSIFICATION
	MUML ARCHITECTURE
	 MUML EVALUATION AND MODEL CHECKING RESULTS.
	CONCLUSION
	REFERENCES

